
Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 1

Physilog®5 Android SDK
The Physilog®5 Android SDK allows the creation of new Android applications that use Physilog®5

sensors or the integration of Physilog®5 into existing applications. The Physilog®5 is a Swiss quality

movement sensor which measures acceleration, angular velocity and barometric pressure. With the

Android SDK, the Physilog®5 can be controlled from your Android application and you can receive the

raw data streamed to the Android device. This document contains general information about the SDK

as well as details about how to use the available functionalities.

Table of Contents
1. Content of SDK package .. 3

2. Capabilities .. 3

3. Technical Information ... 3

4. Ease of integration .. 3

5. Using the Android library .. 4

5.1. Adding the library to an existing project ... 4

6. Usage of PhysilogLib .. 5

6.1. Android Permissions .. 5

6.2. PhysilogManager ... 5

6.3. Physilog's states ... 6

6.3.1. Connection State ... 6

6.3.2. Device state ... 6

6.4. Physilog(s) Connections and Disconnections .. 7

6.4.1. AvailablePhysilogsFragment (Pre-made interface) ... 7

6.4.2. Manual Physilog (dis)connection (See ConnectionFragment.java) 8

6.4.3. OnResume ... 9

6.4.4. Start and stop the sensor without file transfer during measurement (See

RemoteControlFragment.java) .. 9

6.5. Broadcasts ... 10

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 2

6.5.1. Streaming sensor's data (See SensorFragment.java) .. 10

6.5.2. File transfer during measurement (See FileFragment.java) .. 12

6.5.3. File transfer after measurement (See FileTransferFragment.java) 12

6.5.4. List of available broadcasts ... 13

Contact information .. 15

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 3

1. Content of SDK package
The SDK contains

• A sample Android application that showcases several features of the SDK

• An Android Library in AAR format called “physiloglib-release.aar” which can be found in the

libs folder of the sample application

• This User manual for the Android SDK (the Documentation of the library and a short guide on

how to add it to a project can also be found in the ReadMe file)

2. Capabilities
The library manages the Bluetooth connections between the Android device and one or multiple

Physilog®5. It also provides methods to easily interact with them. With it one can:

• Scan for available Physilog®5

• Manage the connection/disconnection to Physilog®5

• Get the accelerometers values from Physilog®5

• Get the gyroscope values from Physilog®5

• Get the barometric pressure values from Physilog®5

• Get the quaternion values from Physilog®5

• Start a Physilog®5 recording from the Android application

• Transfer the measurements to the application while a recording is in progress

• Stop the recording and finish the transfer of data to a file saved on the Android device

3. Technical Information
The library requires at least Android 5.0 (Android Lollipop). This is because it communicates with

Physilog® using Bluetooth Low Energy which was either not present or not stable in previous versions.

Using the library, an application can connect to at most 7 Physilog® devices, but it is recommended to

use a maximum of 4-5 devices at a time. More than this can require important resources to receive

and manage the data coming from the Physilog®. This is especially important when measurements are

sent directly through Bluetooth (streaming mode) and not recorded to a file.

4. Ease of integration
In addition to the examples in the documentation and the sample app, the library also provides a mean

to make the integration as quick and pleasant as possible by providing a premade graphical interface

for the connection and management of Physilog® devices. This is showcased in the first two parts of

the sample app. This is also perfect for quick prototypes that don’t need extensive customization or

branding of the interface and just want to rapidly have something running.

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 4

5. Using the Android library

5.1. Adding the library to an existing project
This is the structure of a classic Android project:

|-Yourapp

|--.idea

|--build.gradle <- important

|--gradle

|--app

|----build

|----libs <- add the aar file here

|----jars

|----src

|----build.gradle <- important

1. from the root of your project add the physiloglib-release.arr to app/libs . Create the libs folder if

needed.

2. Open the build.gradle found in the root of your project, and add flatDir{dirs 'libs'} like below:

allprojects {

 repositories {

 jcenter()

 //Add this

 flatDir {

 dirs 'libs'

 }

 }

}

3. Open the build.gradle found in the app folder of your project, and add the library to your dependencies

dependencies {

 //Add this

 compile(name:'physiloglib-release', ext:'aar')

}

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 5

6. Usage of PhysilogLib
In addition to the explanations given here, five complete examples of interactions are provided in the

sample app.

• ConnectionFragment: Do a manual Bluetooth scan and automatically connect to one of the

available Physilog® device.

• RemoteControlFragment: Start and stop the recording of the sensor(s) without receiving the

data on the Android device.

• SensorFragment: Display the raw data and firmware version from the Physilog® it's connected

to.

• FileFragment: Start the recording of measurement in a file and display its transfer to the

android device.

• FileTransferFragment: Request the transfer of a specific file previously collected with the

sensor.

6.1. Android Permissions
PhysilogLib requires multiple permissions to work, it needs Bluetooth access, localization access (for

Bluetooth Low Energy on versions of Android > 5) and storage read/write to store the measurements.

Since PhysilogLib is an Android library, it has already declared the needed permissions in its own

AndroidManifest.xml. But since Android 6, it is required to dynamically request each permission, so

when your first use the PhysilogManager in you code, you need to request the permissions:

//If you are in an activity and not a fragment, replace both getter by "this"

physilogManager = PhysilogManager.getInstance(getContext());

physilogManager.checkAndRequestPermissions(getActivity());

Tip: In Android studio, you can see what the combined manifest will look like by pressing the Merged

Manifest button on the bottom when editing your manifest.

6.2. PhysilogManager

The state of the library is maintained in a Singleton called PhysilogManager that handles the

connection with the Physilog®, and gives methods to access them. To get an instance of

PhysilogManager use PhysilogManager.getInstance(context);

From the PhysilogManager it is then possible to get an instance of the Physilog class (or the list of all

of them). This object encapsulates the state of a Physilog® device and gives functions that allow to

interact with the sensor. Below is a simple example:

PhysilogManager pm = PhysilogManage.getInstance(this);

List<Physilog> physilogs = pm.getPhysilogs();

String TAG = "Demo";

//Log some information

https://en.wikipedia.org/wiki/Singleton_pattern

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 6

for(Physilog ph: physilogs){

 Log.d(TAG, "name: " + ph.getName());

 Log.d(TAG, "battery: " + ph.getBatteryLevel());

 Log.d(TAG, "state: " + ph.getStateText());

 ...

}

//start streaming of data

for(Physilog ph: physilogs){

 if(ph.getState() == Physilog.STATE_STANDBY_OFF){

 //information transmitted by streaming can be received using broadcast (see next section)

 ph.startStreaming();

 }

}

6.3. Physilog's states

A Physilog instance has two states. One for the Bluetooth connection (connected, connecting etc.)

and one for the actual state of the Physilog® device (standby, recording, streaming etc.).

6.3.1. Connection State

This is the state of the Bluetooth connection between the Android device and the Physilog®. It is

defined as a java enumeration and can be accessed through the getConnectionState() method of a

Physilog instance and can be one of the following:

public enum ConnectionState {

 Disconnected, Disconnecting, Connecting, Connected

}

Each of the states also has a member variable called textId that points to a text in the library's

string.xml. You can use this to display or log the connection state.

Tip: Since it's very common to only work on Connected Physilog®, the physilogManager has a

function getConnectedPhysilogs that directly returns the list of all connected Physilogs.

6.3.2. Device state

This is the state of the Physilog® device, in the sample app you can see it displayed in the list of available

Physilog®. It comes directly from the physical device and is represented as a byte. To facilitate its usage,

several constants are defined in the Physilog class:

class Physilog {

 public final static byte STATE_SET_PHYSILOG_HW;

 public final static byte STATE_STANDBY_OFF;

 public final static byte STATE_PHYSILOG_ON_FILE;

 public final static byte STATE_PHYSILOG_PAUSED;

 public final static byte STATE_USB_MASSE_STORAGE;

 public final static byte STATE_CONFIGURE_PHYSILOG;

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 7

 public final static byte STATE_ENABLE_BLE;

 public final static byte STATE_DISABLE_BLE;

 public final static byte STATE_WORKING_LAST_FILE;

 public final static byte STATE_PHYSILOG_ON_STREAM;

 }

As you can see in the sample app's source code, it is usually used to verify that a Physilog® is in Standby

state before starting to record / stream. To get a textual representation of this state use

the getStateText() method from a Physilog object. A quick example on how to use this state:

boolean allReady = true;

for(Physilog ph: physilogManager.getConnectedPhysilogs()){

 if(ph.getState() != Physilog.STATE_STANDBY_OFF){

 allReady = false;

 break;

 }

}

if (allReady){

 //Use the physilogs here

}

6.4. Physilog(s) Connections and Disconnections
To do the Bluetooth connections between the Android devices and the Physilog®, the library offers

you two choices: Use a pre-made interface that handles all the Bluetooth connections and that can be

integrated into any activity or displayed on its own. Or use a set of functions to manually start

Bluetooth scan, connect to a Physilog® etc. to build your own interface the way you want.

6.4.1. AvailablePhysilogsFragment (Pre-made interface)

This is the pre-made interface. It's an Android Fragment that can be incorporated in any activity or

displayed temporarily on the screen to let the user choose to which Physilog® to connect to. It's used

in the first 2 examples of the sample app (SensorFragment and FileFragment) If you want to

incorporate it into the layout of another activity you can declare it like this:

<fragment android:name="com.gaitup.lib.physilog.AvailablePhysilogsFragment"

 android:id="@+id/available_physilogs_fragment"

 android:layout_width="320dp"

 android:layout_height="match_parent"

 android:layout_alignParentTop="true"

 android:layout_alignParentStart="true" />

And you don't have to care about anything, it will do its job on its own. The details about how you will

be informed of new connections, disconnections etc. follows below.

You can also do more fancy things. For example, if you use the sample app on a phone-sized device,

the fragment will not be part of the layout but only appear when a button on the upper right is pressed.

https://developer.android.com/guide/components/fragments.html

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 8

This is done through the use of the Fragment manager. The code for this can be seen in the

MainActivity.java.

6.4.2. Manual Physilog (dis)connection (See ConnectionFragment.java)

If you don't want to use the pre-made AvailablePhysilogsFragment you can use the methods provided

by the PhysilogManager to create the same functionalities. PhysilogManager has a

function scanForPhysilogs(...) that starts a Bluetooth scan for available Physilog®5. Once it's finished

it calls a listener of class AvailblePhysilogListener and gives it the list of found Physilog®. Let's look at

this example:

 private Physilog physilog;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 ...

 ...

 physilogManager = PhysilogManager.getInstance(getContext());

 physilogManager.checkAndRequestPermissions(getActivity());

 //start searching for physilogs

 physilogManager.scanForPhysilogs(physilogListener);

 }

 //Called when the scan for Physilogs has finished

 private AvailblePhysilogListener physilogListener = new AvailblePhysilogListener() {

 @Override

 public void availablePhysilogs(List<Physilog> physilogs) {

 //List all possible

 for (Physilog ph : physilogs){

 Log.d("Physilog", "Found this available: " + ph.getName())

 }

 //Connect to the first of the list

 if (physilogs.size() > 0){

 physilog = physilogs.get(0);

 physilogManager.connectToPhysilog(physilog.getDevice());

 }

 }

 };

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 9

 @Override

 public void onDestroy() {

 //Don't forget to disconnect

 if (physilog != null && physilog.getConnectionState() == ConnectionState.Connected){

 physilogManager.disconnectFromPhysilog(physilog.getDevice());

 }

 }

As you can see in the example two other functions are useful:

connectToPhysilog(BluetoothDevice) and disconnectFromPhysilog(BluetoothDevice) are to be used

for connection and disconnection.

Note: Bluetooth Low Energy devices are typically only discoverable for a short period of time.

Therefore, it is possible that between the time of the Bluetooth scan and the call of the

function connectToPhysilog , the Physilog® has stopped receiving connections, or has already

connected with another device. So, you will need to keep track of the connected devices. (Details are

given below)

6.4.3. OnResume

In addition to registering in onCreate and unregistering in onDestroy, the Activities and

Fragments must call the library when onResume is called (see the Activity Life-cycle graph). This allows

the library to refresh the connection status with all the Physilogs and re-connnect with the one who

lost connection during the application's pause.

 @Override

 public void onResume() {

 super.onResume();

 physilogManager.initActivity();

 }

6.4.4. Start and stop the sensor without file transfer during measurement (See

RemoteControlFragment.java)

The RemoteControl fragment gives the example how the Physilog can be controlled from the

application and how event markers can be sent from the application to the Physilog during the

measurement using the sendEventToAllPhysilogs() method.

You need to register to the broadcasts related to the connection state of the Physilogs. When all

connected Physilogs are in Standby_off state it is possible to start a synchronized measurement of

the sensors from the application by using startAllRemoteFiles().

https://developer.android.com/guide/components/activities/activity-lifecycle.html#alc

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 10

6.5. Broadcasts
The primary way for the library to send information to the application is through local broadcasts.

Activity/Fragments wanting to be informed of changes such as new connections of a Physilog, new

sensor's data etc. must register for the broadcast using the code below:

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 ...

 ...

 LocalBroadcastManager bm = LocalBroadcastManager.getInstance(this);

 bm.registerReceiver(broadcastReceiverNewPhysilogConnected, new IntentFilter("new_physilog_connected"));

 bm.registerReceiver(broadcastReceiverPhysilogDisconnected, new IntentFilter("physilog_disconnected"));

 }

 @Override

 public void onDestroy() {

 ...

 ...

 LocalBroadcastManager bm = LocalBroadcastManager.getInstance(this);

 bm.unregisterReceiver(broadcastReceiverNewPhysilogConnected);

 bm.unregisterReceiver(broadcastReceiverPhysilogDisconnected);

 }

Where broadcastReceiverNewPhysilogConnected and broadcastReceiverPhysilogDisconnected are

BroadcastReceiver called when the specified broadcast is triggered. From the intent they receive, they

can get the information provided by the broadcast. For example, when a new Physilog® is connected:

 BroadcastReceiver broadcastReceiverNewPhysilogConnected = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 Bundle b = intent.getExtras();

 final BluetoothDevice device = (BluetoothDevice) b.get("BluetoothDevice");

 Log.d("Physilog", "A new Physilog is connected: " + device.getName());

 }

 };

A list of all the available local broadcast can be found at the end of this document.

6.5.1. Streaming sensor's data (See SensorFragment.java)

To get the sensor data of a Physilog® in “real time” in the application, it must be in streaming mode.

To do this you only need to call the method startStreaming() on the Physilog if it is in Standby State

(As shown in an example above). A Physilog cannot be streaming and at the same time record to a file,

therefore no file is saved on the Physilog® internal memory when it is recording in streaming mode.

Once the Physilog® is in streaming mode, the data will automatically arrive on the Android device

trough the broadcasts.

https://developer.android.com/guide/components/broadcasts.html

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 11

There are 2 broadcasts for data streaming:

• new_sensors_data:

o "BluetoothDevice": BluetoothDevice

o "SensorsValues": float[8]

▪ [0] timestamp

▪ [1] gyroX

▪ [2] gyroY

▪ [3] gyroZ

▪ [4] acceleroX

▪ [5] acceleroY

▪ [6] acceleroZ

▪ [7] Baro

Where the timestamp values are given as index, to obtain timestamp in seconds divide by the

highest sampling frequency used in the configuration (f.ex. accelerometer at 128hz, gyroscope at

256hz and barometer at 16hz -> divide by 256).

• new_quaternion_data:

o "BluetoothDevice": BluetoothDevice

o "QuaternionValues": float[4]

▪ [0] w

▪ [1] x

▪ [2] y

▪ [3] z

This is an example of how the BroadcastReceiver would look for the first broadcast:

BroadcastReceiver broadcastReceiverNewSensorsData = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 Bundle b = intent.getExtras();

 final BluetoothDevice device = (BluetoothDevice) b.get("BluetoothDevice");

 final float[] values = b.getFloatArray("SensorsValues");

 float time = values[0];

 float gyroX = values[1];

 float gyroY = values[2];

 ...

};

The SensorFragment also illustrates how to obtain information about the sensor settings and its

firmware version. This is shown in the method broadcastReceiverSensorSettingsValue.

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 12

6.5.2. File transfer during measurement (See FileFragment.java)

To have the Physilog® record the measurements to a file and send it over Bluetooth is done through

another set of broadcasts. This time the setup is a bit more complicated. Before

calling startAllFilesStreaming() on the Physilogs, we must first call a method that will prepare the

Physilogs for the recording and create a file for the data to go:

//Start the recording for every physilog connected

physilogManager.prepareForRecording();

for(Physilog ph: physilogManager.getConnectedPhysilogs()){

 ph.startAllFilesStreaming(); //NEW method name

 //Update the ui

}

This time there are 3 broadcasts related:

• file_name:

o "BluetoothDevice": BluetoothDevice

o "name": String

• file_stream_progress:

o "BluetoothDevice": BluetoothDevice

o "progress": int

• file_generated:

o "BluetoothDevice": BluetoothDevice

o "progress": int

The full path of the file (not just the name) can be obtained through the getFilePath() method of a

Physilog object.

By default, the generated file is recorded on the primary extern storage of the android device in folder

called "Physilog". It is possible to choose in which folder they will arrive:

//Choose where the files will be recorded

String dir = Environment.getExternalStorageDirectory().toString() + "/Example";

physilogManager.setFilesDirectory(dir);

This will not move already existing files previously stored. This will need to be done manually with a

file explorer.

6.5.3. File transfer after measurement (See FileTransferFragment.java)

This fragment illustrates how to transfer a file from the Physilog to the Android device after the

measurement on the sensor is finished. To start a file transfer, all connected Physilog must be in

Standby_off state. The broadcast works similarly to the file transfer during measurement. The

difference is that the sensor(s) will not start a new measurement and you need to specify the name

of the file you want to receive from the Physilog. This file needs to exist on the sensor’s memory.

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 13

6.5.4. List of available broadcasts

Here is a list of all available broadcasts and for each of them the extra information they bring:

• new_physilog_connected:

o "BluetoothDevice": BluetoothDevice

• physilog_disconnected:

o "BluetoothDevice": BluetoothDevice

• new_sensors_data:

o "BluetoothDevice": BluetoothDevice

o "SensorsValues": float[8]

▪ [0] <reserved>

▪ [1] gyroX

▪ [2] gyroY

▪ [3] gyroZ

▪ [4] acceleroX

▪ [5] acceleroY

▪ [6] acceleroZ

▪ [7] Baro

• new_quaternion_data:

o "BluetoothDevice": BluetoothDevice

o "QuaternionValues": float[4]

▪ [0] w

▪ [1] x

▪ [2] y

▪ [3] z

• state_changed:

o "BluetoothDevice": BluetoothDevice

o "new_state": byte

• state_read:

o "BluetoothDevice": BluetoothDevice

o "StateValue": byte

• sensors_settings_value:

o "BluetoothDevice": BluetoothDevice

o "AccFreq": int

o "GyroFreq": int

o "BaroFreq": int

o "AccG": int

o "GyroG": int

o "Firmware_version" : string

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 14

• battery_level:

o "BluetoothDevice": BluetoothDevice

o "value": byte // from 0 to 100 and -1 for invalid battery information

• file_name:

o "BluetoothDevice": BluetoothDevice

o "name": String

• file_stream_progress:

o "BluetoothDevice": BluetoothDevice

o "progress": int //from 0 to 100

• file_generated:

o "BluetoothDevice": BluetoothDevice

o "progress": int //Should be 100 since the file is finished

Gait Up SA
EPFL Innovation Park, Bat C. CH-1015 Lausanne

www.gaitup.com
TVA CHE-145.136.760

Physilog5 Android SDK user manual - v1.1.0 Date: 13.02.2018
Copyright © 2018, All Rights Reserved - Gait Up SA. CH-1015 Switzerland 15

Contact information

At Gait Up, we welcome your feedback and questions.

Please contact us at:

EPFL Innov’ Park - C

CH-1015 Lausanne

tel: +41 21 633 7527

mail: contact@gaitup.com

web: www.gaitup.com

Version Changes Responsible Date

1.0.0 Initial release to public with version 1.0.0 of SDK Marius Rosset /

Rebekka Anker

16.10.2017

1.1.0 Changes related to release of v1.1.0 of Android SDK:

- New functions with illustration fragments:

RemoteControl, FileTransfer

- change of method name to start file transfer during

measurement

Rebekka Anker 13.02.2018

http://www.gaitup.com/
http://www.gaitup.com/

